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1. Introduction

In recent years we have received an impressive evidence that integrability might provide a

key concept to get more insight into the complicated dynamics of the large N gauge and

string theories, and, in particular, into the AdS/CFT duality conjecture [1]. Indeed, the

N = 4 SYM in the large N limit is conjectured to be an integrable model [2, 3], at least in a

certain asymptotic approximation. Integrability allows one to formulate the corresponding

Bethe ansatz whose solutions encode the spectrum of the model. A nice and distinguished

feature of this approach is that at many instances the Bethe equations can be solved exactly

or used indirectly to make a comparison with the dual string theory. There has been a lot

of discussion in the recent literature concerning construction and applications of the Bethe

ansatz to the N = 4 SYM theory, we refer the reader to the comprehensive reviews [4].

The sigma-model describing Type IIB superstrings propagating in the AdS5×S5 space-

time [5] is also classically integrable [6]. However, due to the large number of dynamical

variables and their involved interactions the quantization problem looks highly non-trivial.

An interesting insight into the quantum theory can be gained by studying an expansion

around the so-called plane-wave limit [7] where the string theory simplifies dramatically

but still allows for a non-trivial comparison to the dual gauge theory [8].
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Perhaps one of the main outcomes of string integrability is that the string sigma-

model admits a rich variety of explicit soliton solutions [9, 10]. In fact the whole classical

(finite-gap) spectrum is encoded into a set of certain integral (Bethe type) equations [11]

supported on the corresponding algebraic curves [12]. Finally, the (quantum) gauge and

(classical) string theories reveal a certain interesting similarity between their integrable

structures that can be manifested either through the study of infinite towers of conserved

charges [13 – 15] or, equivalently, by comparing the corresponding Bethe equations [11,

16]. A complementary approach to quantum string based on the knowledge of a quantum

integrable sigma-model in the infinite volume was suggested in [17].

Recently, the knowledge of the classical string Bethe equations [11] together with

the asymptotic gauge theory Bethe ansatz [16] allowed us to conjecture a novel Bethe

ansatz [18] which is supposed to capture the leading quantum dynamics of strings in AdS5×
S5. We will refer to the corresponding construction as the quantum string Bethe ansatz.

Conjectured originally for the so-called su(2) sector, it has been generalized to other sectors

[19] and, finally, to the whole superstring sigma-model [20]. Classical spinning strings,

the 1/J corrections to energies of the plane-wave states, the famous λ1/4 strong coupling

asymptotics, all these limiting cases can be derived from the quantum string Bethe ansatz.

As was shown very recently [21, 22] the ansatz seems to be capable to incorporate the 1/J

corrections to classical spinning strings. Quite intriguing, it also admits interpretation in

terms of integrable long-range spin chains [23] and naturally emerges in the study of the

plane-wave matrix models [24]. However, in spite of all these remarkable developments it

remains unclear how the quantum string Bethe ansatz could arise upon quantization of

strings beyond the semi-classical approximation.1

On the other hand, it is known that string theory admits consistent truncations to

smaller sectors which contain in particular string states dual to operators from the corre-

sponding closed sectors of gauge theory. In gauge theory a closed sector is an invariant

subspace of composite operators on which the action of the dilatation operator closes.

Studying the mixing problem within a closed sector provides certain simplifications, e.g.,

in formulating the corresponding Bethe ansatz, etc. One can try to apply a similar idea to

string theory. Instead of dealing with the complicated dynamics of the whole model one

can consistently truncate the classical string equations to a smaller set of fields and further

study their dynamical properties. One can also try to construct the quantum theory of a

truncated sector although it is not a priori guaranteed that this theory will have a certain

relation to the actual quantum string: the procedures of truncation and quantization are

not expected to commute. Thus it is of interest to look at this problem: It might help to

understand the origin and the range of validity of the quantum string Bethe ansatz as well

as interrelation between truncation and quantization procedures.

From all varieties of the closed sectors [4] on the gauge theory side the so-called su(1|1)
sector seems particularly attractive. In the N = 1 language it contains composite operators

made of two Yang-Mills elementary fields, Z and Ψ, where Z is the complex scalar from

a scalar supermultiplet and Ψ is the Weyl fermion from the gaugino supermultiplet. The

1Possible sources of the corrections to the gauge/string Bethe ansäte have been recently discussed in [25].
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su(1|1) symmetry group transforms Z and Ψ into each other. In this sector the dilatation

operator [4] and the corresponding asymptotic Bethe ansatz [19] are known up to three-loop

order of perturbation theory; at one loop the dilatation operator just coincides with the

Hamiltonian of the free lattice fermion [26]. The coherent state description of the su(1|1)
sector with its further comparison to string theory was considered in [27].

In our previous work [28] we have found the consistent truncation of the classical

superstring theory to the su(1|1) sector. We have further removed all unphysical degrees

of freedom by fixing the so-called uniform gauge [29, 30]: The world-sheet time τ was

identified with the global AdS time t, while the momentum of an angle variable φ of S5 was

declared to be equal to the Noether charge J corresponding to translations of φ. The space-

time energy E of the string coincides in this approach with the world-sheet Hamiltonian

H which is a function of the charge J :

E = H(J) .

The physical degrees of freedom are two complex fermions which can be organized in a single

world-sheet Dirac fermion. The resulting theory appears to be a new non-trivial interacting

theory of the 2-dim massive Dirac fermion. It is integrable because the consistent reduction

can be carried over for the Lax representation of the original sigma-model. Finally, we used

the corresponding Hamiltonian to derive the 1/J correction to the energies of the plane-

wave states and found a perfect agreement with the results by [31, 32].

To proceed with quantization one has to first identify the action and angle variables for

the classical model. This is rather non-trivial in our present setting because the Lagrangian

of the reduced theory is apparently complicated and involves terms up to six order in

fermions and their derivatives.

In this paper we will solve and find the semi-classical spectrum E(J) of our interacting

theory in a way which bypasses direct diagonalization of the interacting Hamiltonian.

The basic idea is to fix reparametrization invariance by choosing a gauge most suitable

for computing the spectrum of E. Quite remarkably, there exists a gauge choice which

linearizes equations of motion! In the following we will refer to this gauge as the uniform

light-cone gauge. In the light-cone coordinates x± = 1
2 (φ ± t) this gauge consists in fixing

x+ = τ and p+ = P+ = const, where p+ is the momentum conjugate to x−. The world-

sheet Hamiltonian H and the parameter P+ are now related to the global charges of the

model E and J as

H = E − J , P+ = E + J .

Since H itself is a certain function of P+ we get an equation

E = J + H(E + J) ,

which can be solved for the energy E ≡ E(J). It appears that the Hamiltonian corre-

sponding to this gauge choice is just the quadratic Hamiltonian for two complex fermions!

Thus, in the uniform light-cone gauge the theory becomes free and the spectrum of H is

trivially computed.
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It is worth emphasizing that in this way we solved our reduced model exactly, i.e.,

without assuming anything about the range of J . Taking J to be large we can easily

construct the 1/J expansion of the energy. The leading order in this expansion is the

energy of a plane-wave state, while at the subleading order we again reproduce the 1/J

correction found in [31, 32]. Remarkably, to obtain this correction in our approach we need

only free fermions. The subleading 1/J2 correction turns out to be an analytic function of

λ′ = λ/J2, while the recent studies [22, 33] of the 1/J correction to energies of classical

spinning strings suggest the appearance at this order of non-analytic terms. This possible

mismatch can be attributed to the fact that the su(1|1) sector is not closed in quantum

string theory.

It is also easy to analyze the strong coupling expansion, λ → ∞, of our exact result.

Again we reproduce the leading asymptotic λ1/4, and find a disagreement of the subleading

λ−1/4 correction with the quantum string Bethe ansatz predictions.

The paper is organized as follows. In section 2 we explain the uniform gauge approach

which is then applied in section 3 to the su(1|1) sector. We show that the gauge-fixed

Hamiltonian is that for free massive fermions. In section 4 we compute the spectrum

of the model and analyze the near-plane wave and strong coupling expansions. We also

discuss generalization to the case of non-vanishing winding. In section 5 we establish a

relation between the energy spectrum we found and the quantum string Bethe ansatz. In

Conclusion we discuss the consequences of our results and open problems. Finally, in the

appendix A we compute the 1/J2 and 1/
√

λ corrections by using the quantum string Bethe

ansatz and in appendix B we discuss the Lax pair which arises upon fixing the uniform

light-cone gauge.

2. Uniform light-cone gauge

In this section we introduce the uniform light-cone gauge for strings propagating on a

target manifold. This gauge generalizes the standard phase-space light-cone gauge of [35]

to a curved background [36]. It belongs to the class of gauges used to study the dynamics

of strings in AdS5 × S5 [29, 30].

We denote the time coordinate of the manifold by t, and assume that the manifold

possesses a U(1) isometry realized by shifts of an angle variable φ. To impose the uniform

light-cone gauge we also assume that the string sigma-model action is invariant under shifts

of the time coordinate t and the angle variable φ, with all the other bosonic and fermionic

fields being invariant under the shifts. This means that the string action does not have

an explicit dependence on t and φ and depends only on the derivatives of the fields. An

example of such a string action is provided by the Green-Schwarz superstring in AdS5 ×S5

where the metric can be written in the form

ds2 = fa(z)dt2 + fs(y)dφ2 + ga
ij(z)dzidzj + gs

ij(y)dyidyj .

Here t is the global time coordinate of AdS5, φ is an angle of S5, and zi and yi are

the remaining coordinates of AdS5 and S5, respectively. Strictly speaking, the original

Green-Schwarz action presented in [5] contains fermions which are charged under the U(1)
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transformations generated by the shifts of t and φ. However, it is possible to redefine the

fermions and make them neutral in the same way as it was done in [28] for fermions from

the su(1|1) sector.

The invariance of the string action under the shifts leads to the existence of two

conserved currents, Eα and Jα, and two conserved charges

E =

∫ 2π

0

dσ

2π
E0 ; J =

∫ 2π

0

dσ

2π
J0 .

It is clear that the charge E is the target space-time energy, and J is the total U(1) charge

of the string. It is well-known that the time components, E0 and J0, of the abelian charges

are just equal to the momenta conjugate to the coordinates t and φ:2

pt ≡ E0 pφ ≡ J0 .

To impose the uniform light-cone gauge we introduce the light-cone coordinates:

t = x+ − x− , φ = x+ + x− , pt =
1

2
(p+ + p−) , pφ =

1

2
(p+ − p−) (2.1)

x+ =
1

2
(φ + t) , x− =

1

2
(φ − t) , p+ = pφ + pt , p− = pt − pφ .

In terms of the light-cone coordinates the kinetic term takes the form

− ptṫ + pφφ̇ = −p−ẋ+ + p+ẋ− . (2.2)

Then we fix the uniform light-cone gauge by the conditions

x+ = τ +
m

2
σ , p+ = P+ = E + J is a constant . (2.3)

The integer number m is the winding number which appears because the coordinate

φ is an angle variable with the range 0 ≤ φ ≤ 2π. It is clear from (2.2) that in this gauge

the 2-dim Hamiltonian is identified with the integral over σ of the momenta p−:

H =

∫ 2π

0

dσ

2π
p− = E − J . (2.4)

In the AdS/CFT correspondence the space-time energy E of a string state is identified

with the conformal dimension ∆ of the dual CFT operator: E ≡ ∆. Since the Hamiltonian

H is a function of P+ = E + J , the relation (2.4) gives us a nontrivial equation on the

energy E. Computing the spectrum of H and solving the equation (2.4) would allow us to

find conformal dimensions of dual CFT operators.

2We assume that the kinetic term in the Hamiltonian form of the string action has the form −pt ṫ +

pφφ̇ + · · · , with the negative sign in front of pt.
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3. The su(1|1) sector

In this section we use the uniform light-cone gauge to analyze the string theory on AdS5×S5

reduced to the su(1|1) sector. It was shown in [28] that the sector contains the scalars t

and φ, and two complex fermions ϑ3 and ϑ8. The Lagrangian3 of the reduced model can

be written in the form

L =

√
λ

2
γττ

(

ṫ2 − φ̇2 +
i

2
(ṫ + φ̇)ζτ − 1

2
(ṫ + φ̇)2Λ

)

(3.1)

+

√
λ

2
γσσ

(

t′
2 − φ′2 +

i

2
(t′ + φ′)ζσ − 1

2
(t′ + φ′)2Λ

)

+
√

λγτσ

(

ṫt′ − φ̇φ′ +
i

4
(ṫ + φ̇)ζσ +

i

4
(t′ + φ′)ζτ − 1

2
(ṫ + φ̇)(t′ + φ′)Λ

)

+ Lwz .

Here the Wess-Zumino term has a remarkably simple form (κ = ±
√

λ/2)

Lwz =
κ

2
Ωτ (t

′ + φ′) − κ

2
Ωσ(ṫ + φ̇) , (3.2)

and for various fermionic contributions we use the concise notations

ζτ = ϑiϑ̇
i + ϑiϑ̇i , Ωτ = ϑ3ϑ̇8 + ϑ8ϑ̇3 − ϑ3ϑ̇8 − ϑ8ϑ̇3 , Λ = ϑiϑ

i ,

ζσ = ϑiϑ
′i + ϑiϑ′

i , Ωσ = ϑ3ϑ
′
8 + ϑ8ϑ

′
3 − ϑ3ϑ′8 − ϑ8ϑ′3 .

(3.3)

It is important to mention that the periodicity condition for the fermions ϑ3 and ϑ8 depends

on the winding number m. If m is even the fermions are periodic, and if m is odd they are

anti-periodic. The dependence appears because one makes the original periodic fermions

neutral under the shifts of t and φ by means of a field redefinition, and this induces the

change in the periodic condition, see [28] for details.4

In [28] the action (3.1) was studied by imposing the phase-space uniform gauge t = τ ,

pφ = J , where pφ is the canonical momentum conjugate to the angle variable φ. It was

shown that the gauge-fixed action arising in this way defines an integrable model of a

massive interacting Dirac fermion described by the following Lagrangian

L = J
[

− 1 − 1

2

(

iψ̄ρα∂αψ − i∂αψ̄ραψ
)

+ ψ̄ψ (3.4)

− 1

4
εαβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ) +

1

8
εαβ(ψ̄ψ)2∂αψ̄ρ5∂βψ

]

,

where ψ is the fermion, and ρα are 2-dim Dirac matrices. Here we will reanalyze (3.1) by

imposing the uniform light-cone gauge, and show that in this gauge the gauge-fixed action

is a free action for the fermions ϑ3 and ϑ8. This allows us to solve the integrable system

described by the Lagrangian (3.4) in the semi-classical approximation. We do not know

however if the change of gauge leads to quantum-equivalent models because the reduction

of the string theory to the su(1|1) sector breaks the conformal invariance that is necessary

3We are using the notations from [28]. The reader can consult [28] for details of the reduction.
4An equivalent change of boundary conditions was also found in the analysis of the spectrum of fluctu-

ations around a multi-spin circular string [34].
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for quantum equivalence of different gauges. It would be interesting to quantize (3.4)

directly, and compare its spectrum with the spectrum we find from the light-cone gauge

free fermion action.

Introducing the light-cone coordinates (2.1) we rewrite (3.1) in the Hamiltonian form

L = − p−ẋ+ + p+ẋ− − i

4
p+ζτ + κx′

+Ωτ

− 1

γττ
√

λ

[1

2
p+p− +

1

4
p2
+Λ − κ

2
p+Ωσ +

i

2
λx′

+ζσ − 2λx′
+x′

− − λx′
+

2
Λ

]

+
γτσ

γττ

[

− i

4
p+ζσ + p+x′

− − p−x′
+ + κx′

+Ωσ

]

. (3.5)

As is usual in string theory with two-dimensional reparametrization invariance, the

components of the world-sheet metric γαβ enter the phase-space Lagrangian in the form

of the Lagrangian multipliers. Imposing the uniform light-cone gauge (2.3) and solving

equations of motion for the components γττ and γτσ we find

p− = κΩσ − 1

2
P+Λ , (3.6)

x′
− =

i

4
(ζσ + imΛ) . (3.7)

Integrating (3.7) over σ, we get the level-matching condition

V =

∫ 2π

0

dσ

2π

i

2
(ζσ + imΛ) = m . (3.8)

As usual the condition should be imposed on the physical states of the model. In fact

the field x− is unphysical and varying the Lagrangian w.r.t. p+ we find that it evolves

according to a first-order equation

ẋ− =
i

4
(ζτ + 2iΛ) . (3.9)

The components of the world-sheet metric can be found from the equations of motion for

p− and x− and they are given by

γττ =
1

2

(

√
λ

P+
m2 − P+√

λ

)

, γτσ = −m
√

λ

P+
. (3.10)

Since the unitarity of the model requires γττ < 0 we get that P+ = E + J >
√

λ|m|. The

origin of this condition is easy to understand. If m 6= 0 the string winds around a circle,

and has the length equal to 2π|m|. The energy of such a string must be greater than the

product of the string tension and its length, and this leads to the condition. The condition

shows that the energy of a long winding string always scales as
√

λ [30] as opposite to the

usual λ1/4 scaling of a short string with m = 0.

Finally, substituting the solutions of the Virasoro constraints to the Lagrangian (3.5),

we get the gauge-fixed Lagrangian for strings in the su(1|1) sector

L = − i

4
P+ζτ +

1

2
κmΩτ − κΩσ +

1

2
P+Λ . (3.11)
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Recalling the definitions (3.3), we see that the action is a free action for two complex

fermions! If the winding number m = 0 then rescaling σ it can be cast to the form of the

action for a free massive Dirac fermion [28].

4. Spectrum

In this section we discuss the spectrum of the model. We start with the simplest case of the

vanishing winding number m = 0. In this case the Lagrangian coincides with the quadratic

part of the Lagrangian obtained in [28], and, therefore, we can just use the results from [28].

It was shown there that after a proper change of the fermionic variables (see section 7 of

[28]) the action (3.11) takes the form

L =

∞
∑

n=−∞

[

−i
(

a+
n ȧ−n + b+

n ḃ−n

)

− ωn

(

a+
n a−n + b+

n b−n
)

]

, (4.1)

where ωn =
√

1 + λ̃n2, and we define λ̃ by the formula

λ̃ =
4λ

P 2
+

=
4λ

(E + J)2
.

In terms of the oscillators a±, b± the level matching condition has the usual form

V =
2

P+

∞
∑

n=−∞

(

n a+
n a−n − n b+

n b−n
)

= 0 , (4.2)

and therefore the sum of a-modes should be equal to the sum of b-modes. As was discussed

in [28], the SYM operators from the su(1|1) subsector are dual to states obtained by acting

by operators a+
n on the vacuum. A general M -impurity state with M = Ma +Mb obtained

by acting by Ma operators a+
n and Mb operators b+

n is

|Ma,Mb〉 = b+
j1

. . . b+
jMb

a+
i1

. . . a+
iMa

|0〉 . (4.3)

It is obvious that the 2-dim energy of this state is equal to

H|Ma,Mb〉 =

(

M
∑

i=1

ωni

)

|Ma,Mb〉 . (4.4)

As was discussed in section 2, the 2-dim energy of a string state is related to the space-time

energy by the formula H = E−J . Taking into account (4.4), we get the following equation

for the space-time spectrum of string states

E − J =

M
∑

i=1

√

1 +
4λn2

i

(E + J)2
. (4.5)

Since all fermions are neutral under the U(1) subgroup shifting the bosonic field φ, the

state (4.3) carries the same J units of the corresponding charge for any number of excita-

tions M . That means that an M -impurity string state should be dual to the field theory

operator of the form

tr
(

ΨMa
+ ΨMb

− ZJ−M
2

)

+ . . . , (4.6)
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where Ψ± are the two fermions from the gaugino multiplet of N = 4 SYM, carrying

the Lorentz charge 1
2 and −1

2 under one of the su(2)’s from the Lorentz algebra su(2, 2).

According to the AdS/CFT correspondence, the space-time energy E of a string state is

equal to the conformal dimension of the dual CFT operator, and, therefore, solutions of

eq. (4.5) give us dimensions of the operators (4.6).

In what follows we restrict our attention to the states dual to the closed su(1|1) sub-

sector of gauge theory. For such states Mb = 0, and the sum of the modes vanishes.

4.1 Near-plane wave correction to the energy

It is very simple to use eq. (4.5) to compute the 1/J correction to the energy of the plane-

wave states from the su(1|1) sector. All one needs to do is to introduce the effective coupling

constant λ′ = λ/J2, and solve (4.5) in powers of 1/J keeping λ′ and M finite. After a

simple algebra we find

E − J =

M
∑

i=1

ωi



1 − λ′

2J

M
∑

j=1

n2
j

ωj



 + O
(

1

J2

)

, (4.7)

where ωi =
√

1 + λ′n2
i . Taking into account the level-matching condition this formula can

be rewritten in the form

E = J +
M
∑

i=1

ωi −
λ′

4J

M
∑

i6=j

n2
i + n2

j + 2n2
i n

2
jλ

′ − 2ninjωiωj

ωiωj
. (4.8)

This precisely reproduces the 1/J correction to the M -impurity plane-wave states obtained

in [32, 28] by using nontrivial interacting Hamiltonian for fermions. Here we reproduced

the spectrum by using free fermions!

It is clear that eq. (4.5) can be used to compute the 1/J2 and higher corrections. For

the 1/J2 correction we find

E2 =
λ′

8

M
∑

i,j,k=1

ωiωj
n2

k(3 + 2λ′n2
k)

ω3
k

+
λ′2

4

M
∑

i,j,k=1

ωk

n2
i n

2
j

ωiωj
, (4.9)

where E − J =
∑M

i=1 ωi + E1

J + E2

J2 + · · · . However, since the su(1|1) sector is not closed

in quantum string theory one should also take into account contributions from the fields

which were set to zero in the reduction to the sector. In particular, we do not see the term

λ′5/2/J2 recently predicted from the analysis of the 1/J correction to spinning strings [22].

Moreover, as follows from the analysis in next section, eq. (4.9) does not reproduce correctly

even all terms analytic in λ. The 1/J2 corrections in the su(2) sector were recently studied

in [37] by using a properly adjusted fast-string action. Our results suggest that to derive

the action one would have to take into account the contribution of fields that are not from

the su(2) sector.
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4.2 Strong coupling limit

In our derivation of eq. (4.5) we never assumed that J , and therefore E must be of order√
λ. That means that we can also consider the strong coupling limit when λ → ∞ and

E ∼ λ1/4. We need to consider the two cases: i) J ∼ 1, ii) J ∼ E ∼ λ1/4. To simplify the

notations it is convenient to introduce the radius of S5: R =
√

λ. Then, in the first case,

J ∼ 1, we find

E = 2
√

nR

(

1 +
1

8R

(

J2

n
+

∑

i

1

|ni|

)

+
1

8
√

nR3/2

∑

i

1

|ni|
+ · · ·

)

, (4.10)

where n ≡ 1
2

∑

i |ni| is the level of the string state. To understand the physical meaning of

the formula it is useful to find E2:

E2 = 4nR + J2 + n
∑

i

1

|ni|
+

√
n√
R

∑

i

1

|ni|
+ · · · . (4.11)

It is clear from the formula that the first two terms give the usual dispersion relation for a

string state of level n moving in the φ-direction with the momenta J . The remaining terms

are the leading 1/
√

R corrections. Let us also note that the expansion goes in powers of

1/
√

R = 1/λ1/4.

In the second case, J ∼ E ∼ λ1/4, the eq. (4.5) gives

E =
√

4nR + J2

(

1 +
1

2R

(

n +
1

2
j(j +

√

4n + j2)

)

∑

i

1

|ni|
+ O(1/R2)

)

, (4.12)

where j = J/
√

R is kept finite in the expansion. In this case the expansion goes in powers

of 1/R = 1/
√

λ.

We do not expect that our formulas reproduce correctly the leading strong coupling

corrections because as we will discuss in the next section and in the appendix A they do

not match the predictions of the quantum string Bethe ansatz.

4.3 Non-vanishing winding number

Here we discuss the spectrum of the model for the case of non-vanishing winding number

m 6= 0. In this case one can show that there is a change of the fermions such that the

action (3.11) takes the form

L =

∞
∑

n=−∞

[

−i
(

a+
n ȧ−n + b+

n ḃ−n

)

− ω+
n a+

n a−n − ω−
n b+

n b−n

]

, (4.13)

where

ω±
n =

P+

√

P 2
+ − λm2 + 4λn2 ± 2λmn

P 2
+ − λm2

. (4.14)

Since the fermions are periodic if the winding number m is even and anti-periodic if m is

odd, the mode numbers n in (4.13) are integer or half-integer, respectively.
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The space-time energy of a generic string state (4.3) can be again found from the

equation (2.4) that takes the form

E − J =

Ma
∑

i=1

ω+
ni

+

Mb
∑

i=1

ω−
ki

. (4.15)

The string states must satisfy the level matching condition (3.8). In terms of the oscillators

a±, b± it has a rather unusual form

V =
∞

∑

n=−∞

(

c+
n a+

n a−n − c−n b+
n b−n

)

= m , (4.16)

where

c±n =
2nP+ ± m

√

P 2
+ − λm2 + 4λn2

P 2
+ − λm2

. (4.17)

Acting by the level-matching condition on a string state (4.3), we get the following condition

on the mode numbers

Ma
∑

i=1

c+
ni

−
Mb
∑

i=1

c−ki
= m . (4.18)

It is not difficult to show by using (4.15) and (4.17) that the condition just says that the

sum of a-modes minus the sum of b-modes is equal to mJ :

Ma
∑

i=1

ni −
Mb
∑

i=1

ki = mJ . (4.19)

For states from the su(1|1) sector we have Mb = 0. The simplest state is created by acting

by the operator a+
mJ on the vacuum. In this case eq. (4.15) can be solved exactly and we

get for the energy of the state ψ = a+
mJ |0〉

EmJ = J +
√

1 + λm2 .

This formula demonstrates explicitly that the energy of a long string with non-vanishing

winding number scales as
√

λ contrary to the usual λ1/4 scaling of a short string.

Eq. (4.15) cannot be solved exactly for other states but it can be readily used to

compute 1/
√

λ corrections to the energy of a long string. The form of the correction

depends on what scaling we assume for J , and mode numbers ni. To illustrate the J and

mode number dependence we present below a formula for the energy of a state obtained

by acting by M creation operators on the vacuum:

|m1J, . . . ,mMJ〉 = a+
m1J · · · a+

mM J |0〉 ,
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where m1 + m2 + · · ·+ mM = m. We assume that J is kept fixed in the large λ expansion.

Note also that mi can be positive and/or negative, and are not required to be integer.

Then, by using (4.15) we find the energy of the state

Em1J,...,mM J = m
√

λ + J
M
∑

i=1

|mi|
m

+
J2

2m
√

λ



1 −
(

M
∑

i=1

|mi|
m

)2




+
1

4
√

λ

(

1 +
M
∑

i=1

|mi|
m

)

M
∑

j=1

1

|mj|
+ · · ·

We see that for all these states the large λ behavior is the same: m
√

λ. It is interesting

that if some of mi are negative the constant term in the expansion is not equal to J . If all

mi are positive the formula simplifies and takes the form

Em1J,...,mMJ = m
√

λ + J +
1

2
√

λ

M
∑

j=1

1

mj
+ · · · , mi > 0 .

5. Relation to quantum string Bethe ansatz

In this section we discuss the relation of the string spectrum (4.15) we obtained in the

previous section with the spectrum that can be derived by using the quantum string Bethe

ansatz for the su(1|1) sector.

We start by showing that eqs.(4.5) and (4.15) can be derived from the following set of

Bethe ansatz type equations

exp



ipkL +
i

2

M
∑

j=1

(pk (ej − 1) − (ek − 1) pj)



 = 1 . (5.1)

Here pk are to be interpreted as the momenta of excitations of a spin chain of length

L = J + M/2 with M excitations, and

ek =

√

1 +
λp2

k

4π2
(5.2)

is the energy of an elementary excitation, and the spectrum is determined by the equation

E − J =

M
∑

k=1

ek (5.3)

We have written eq. (5.3) in such a form to make obvious its similarity with eq. (4.15).

The sum over j in eq. (5.1) can be easily taken by using (5.3), and we get

exp

(

ipk

(

J +
1

2
M

)

+
i

2
(pk (E − J − M) − 2πm (ek − 1))

)

= 1 , (5.4)
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where

m =
1

2π

M
∑

j=1

pj

is the winding number which we suppose to be an integer.

Collecting the terms with pk together, we get

exp

(

i

2
pk (E + J) − iπmek + iπm

)

= 1 . (5.5)

Finally, taking the logarithm of both sides of the equation and recalling that P+ = E + J ,

we obtain

1

2
pkP+ − πmek = 2πnk , (5.6)

where the mode numbers nk are integer if the winding number m is even, and half-integer

if m is odd. Note that it is in complete agreement with our consideration in the previous

section. The mode numbers nk cannot be arbitrary, they must satisfy a consistency condi-

tion which should be equivalent to the level-matching condition. To find the condition we

take the sum over k of both sides of (5.6) and get

M
∑

k=1

nk = mJ . (5.7)

It is exactly the same relation we obtained in the previous section from the level-matching

condition.

To derive eqs.(4.5) and (4.15) let us first consider the simplest case of the vanishing

winding number. Then we get from (5.6)

pk =
4πnk

E + J
, (5.8)

and substituting the formula into (5.2) and (5.3), we immediately obtain eq. (4.5).

The consideration can be easily generalized to the case of the non-vanishing winding

number. Expressing now pk as a function of ek, and solving eq. (5.6) for ek, we get that

the energy of an elementary excitation ek with the mode number nk coincides with the

frequency ω+
nk

(4.14), and therefore eq. (5.3) just takes the form of eq. (4.15).

Thus, we have shown that the space-time energy spectrum of strings in the su(1|1)
sector and in the uniform light-cone gauge follows from the Bethe type equations (5.1-5.3).

It is not difficult to see that the equations (5.1) in fact coincide with the Bethe ansatz

equations for strings in the su(1|1) sector derived in [19] by analyzing the near BMN

spectrum.5 The only difference is that in [19] the energy of an elementary excitation was

supposed to be

ek =

√

1 +
λ

π2
sin2 pk

2
. (5.9)

5Let us note that in [19] the winding number m was set to zero. Our consideration here is a generalization

of [19] to the general m case.
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Comparing this formula with eq. (5.2), we see that the set of eqs.(5.1-5.3) is an approxi-

mation of the quantum string Bethe ansatz [19] valid in the regime of small momenta pk.

According to (5.8), this is also a high-energy regime where ni/(E + J) ¿ 1. It is not

difficult to see that in the large J limit the approximation is valid up to the 1/J order (see

appendix A for details) and in the strong coupling limit only up to the leading λ1/4 order.

At higher orders in 1/J and 1/λ1/4 the sin2 p
2 begins to give additional contributions to

the space-time energy. That means that computing 1/J2 and 1/λ1/4 corrections should

provide nontrivial tests of the dispersion relation (5.9). Let us stress out that in [18] the

choice of the dispersion relation (5.9) was motivated by the asymptotic Bethe ansatz in

gauge theory [16]. A priori there is no reason why it should not be corrected at large λ.

Recent tests of the quantum string Bethe ansatz for the su(2) and sl(2) sectors performed

in [21, 37] indicate, however, that 1/J2 corrections are compatible with the dispersion

relation. It would be very interesting to compute the leading 1/λ1/4 corrections.

6. Conclusion

In this paper we have introduced the uniform light-cone gauge for superstrings in AdS5×S5,

and applied it to analyze the classically-consistent reduction of the Green-Schwarz action

to the su(1|1) sector.

It appears that in this gauge the reduced model is described by a free action of two

complex fermions, and therefore the spectrum of the model can be easily found. We have

explained how the spectrum is related to the space-time energy spectrum of strings that by

the AdS/CFT correspondence coincides with the spectrum of scaling dimensions of N = 4

SYM.

The space-time energy spectrum appeared to reproduce correctly the leading 1/J cor-

rection in the large J limit, and the leading λ1/4 behavior in the strong coupling limit.

We have shown that the space-time energy equation (4.15) can be reproduced from the

low-momentum approximation to the quantum string Bethe ansatz for the su(1|1) sector.

We have noted however that the naive 1/J2 and 1/
√

λ corrections found by using the

free fermion action differ from the predictions of the quantum string Bethe ansatz, and

computing them by using the whole string sigma-model would provide nontrivial tests of

the ansatz.

Calculating the 1/J2 corrections and even the leading 1/
√

λ corrections would require

using the second-order perturbation theory. The uniform light-cone gauge and su(1|1)
sector seem to be the most suitable ones for such a computation because in this gauge the

sector is described by a free theory, and therefore only the fields that were set to zero in

the reduction to the su(1|1) sector would contribute to the corrections.

Our results also show explicitly that quantizing a classically-closed sector of super-

strings in AdS5 ×S5 cannot lead to results correct for finite J and λ. Moreover, quantizing

such a sector in different gauges might lead to contradictory results. The reason for that is

that the quantum gauge equivalence requires the conformal invariance of the string theory

that is broken when we reduce the theory to a classically-closed sector. It would be in-
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teresting to study the gauge dependence of the su(1|1) sector spectrum by quantizing the

integrable model of a massive Dirac fermion [28] that describes strings in the su(1|1) sector

in the uniform gauge pφ = J .

We conclude therefore that the results derived within a closed sector must be taken

with great care since the correct quantization of superstrings in AdS5 × S5 would require

taking into account all bosonic and fermionic fields of the superstring.
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A. Quantum string Bethe ansatz in the su(1|1) sector

Here we outline the derivation of the 1/J2 correction to the energy of a plane-wave state

by using the conjectured quantum string Bethe ansatz in the su(1|1) sector [19, 20]. We

will also analyze the strong coupling expansion λ → ∞.

A.1 The 1/J expansion

To formulate the Bethe equations one introduces the function

x(u) =
1

2
u +

1

2
u

√

1 − 2g2

u2
, g2 =

λ′J2

8π2

and the notation x± = x(u ± i
2). The variable u is related to the momentum p of an

elementary excitation through the formula

ip = log
x+(u)

x−(u)
. (A.1)

The (logarithm of) Bethe equations are the set of M equations for the momenta pk, k =

1, . . . ,M . In the su(1|1) sector they read [20]

iLpk = 2πink +
M
∑

j 6=k

log
[

1 − g2

2x−
k x+

j

]

− log
[

1 − g2

2x+
k x−

j

]

(A.2)

+iukj

[

log
[

1 − g2

2x−
k x+

j

]

+ log
[

1 − g2

2x+
k x−

j

]

− log
[

1 − g2

2x+
k x+

j

]

− log
[

1 − g2

2x−
k x−

j

]

]

.
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Here nk are the excitation numbers, ukj ≡ uk −uj and L is the length which in our present

case is L = J + 1
2M . As soon as momenta pk are found the energy can be computed by

using the formula

EBA = ig2
M
∑

k=1

(

1

x+
k

− 1

x−
k

)

=

M
∑

k=1

[

− 1 +

√

1 +
λ

π2
sin2 pk

2

]

. (A.3)

Assuming the following expansion for momentum pk in the large J limit

pk =
2πnk

J
+

p
(2)
k

J2
+

p
(3)
k

J3
+ . . . (A.4)

we determine the leading behavior of uk ≡ u(pk) by using the formula (A.1). We find

uk =
Jωk

2πnk
− p

(2)
k

4π2ωkn
2
k

+
(3ω2

k − 1)(−4π4n2
kω

2
k + 3(p

(2)
k )2) − 12πnkω2

kp
(3)
k

48π3n3
kω

3
k

+ . . .

The Bethe equations generate then the perturbative solution for pk

p
(2)
k

π
= −Mnk +

M
∑

j 6=k

nk(1 − ωj) − nj(1 − ωk) (A.5)

and

p
(3)
k = −1

2
Mp

(2)
k +

1

2

M
∑

j 6=k

p
(2)
j

(

ωk − 1 − λ′njnk

ωj

)

− p
(2)
k

(

ωj − 1 − λ′njnk

ωk

)

. (A.6)

Now by using eq. (A.3) we obtain the first few leading terms in the large J expansion of

the energy

EBA =
M
∑

k=1

(ωk − 1) +
EBA

1

J
+

EBA
2

J2
+ . . . ,

where

EBA
1 = λ′

M
∑

k=1

nk

ωk

p
(2)
k

2π
(A.7)

and

EBA
2 =

λ′

24

M
∑

k=1

1

ω3
k



3

(

p
(2)
k

π

)2

+ 12nkω2
k

(

p
(3)
k

π

)

− 4π2n4
kω

2
k



 . (A.8)

Thus, we have computed the 1/J2 correction E2 to the energy of the plane-wave M -

impurity state. On the other hand, the theory of the free Dirac fermion leads to the

corrections (4.7) and (4.9) which we repeat here for convenience

E1 = −λ′

2

M
∑

i,j=1

ωi

n2
j

ωj
, (A.9)

E2 =
λ′

8

M
∑

i,j,k=1

ωiωj
n2

k(3 + 2λ′n2
k)

ω3
k

+
λ′2

4

M
∑

i,j,k=1

ωk

n2
i n

2
j

ωiωj
. (A.10)
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Upon substituting in eqs.(A.7),(A.8) the momenta (A.5) and (A.6) one can show that

the first correction to the energy is the one and the same, while eq. (A.8) coincides with

eq. (A.10) except for the term which explicitly depends on π2:

EBA
1 = E1 ,

EBA
2 = E2 − π2 λ′

6

M
∑

k=1

n4
k

ωk
. (A.11)

Thus, the formula for EBA
2 disagrees with eq. (4.9) which provides the 1/J2 correction from

the theory of the free Dirac fermion. In fact, the additional term proportional to π2 in the

expression for the Bethe ansatz energy EBA
2 occurs due to the term p4 of sin2 p

2 in the large

J expansion of the elementary excitation charge ek in eq. (5.9).

A.2 The strong coupling expansion

Now we analyze the corrections to the strong coupling limit λ → ∞, L ∼ 1. Our discussion

is very close to that of [18]. To investigate the strong coupling expansion it is convenient

to express the x± as functions of the momentum p.

x±(p) =
e±i p

2

4 sin p
2

(

1 +

√

1 +
λ

π2
sin2 p

2

)

. (A.12)

The function u(p) is then

u(p) =
1

2
cot(

p

2
)

√

1 +
λ

π2
sin2 p

2
. (A.13)

We assume that in the strong coupling regime the momentum p admits the following

expansion

p =
p(1)

4
√

λ
+

p(2)

√
λ

+ . . . , (A.14)

where the coefficients p(i) should be determined from the Bethe ansatz equations. The roots

pk (generically complex) obey the conservation law
∑M

k=1 pk = 0. We find it convenient to

group the leading momenta p
(1)
k into two sets: p+

k with Rep
(1)
k > 0, k = 1, . . . ,m and p−k

with Rep
(1)
k < 0, k = m + 1, . . . ,M .

Expanding the Bethe equations in the limit λ → ∞ we obtain at the first three leading

orders the following equations

λ0 : 2πnk − 1

2π

M
∑

j=m+1

p+
k p−j +

m
∑

j=1

χ
(1)
kj = 0 , (A.15)

1
4
√

λ
: Lp+

k =
1

2π

M
∑

j=m+1

[

π(p+
k − p−j ) + p+

k p
(2)
j + p−j p

(2)
k

]

+

m
∑

j=1

χ
(2)
kj , (A.16)

1√
λ

: Lp
(2)
k =

M
∑

j=m+1

[π

2

(p−j
p+

k

+
p+

k

p−j

)

− 1

48π
(p−3

j p+
k + p−j p+3

k ) +
1

2
(p

(2)
k − p

(2)
j ) +

+
1

2π
p
(2)
j p

(2)
k +

1

2π
(p+

k p
(3)
j + p−j p

(3)
k )

]

+

m
∑

j=1

χ
(3)
kj . (A.17)
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Here we presented equations for k = 1, . . . ,m only as they are enough for our further

discussion. The functions χ
(1)
kj are rather complicated, e.g.,

χ
(1)
kj =

1

i
log

1
p+

j

+ 1
p+

k

+ i
4π (p+

j − p+
k )

1
p+

j

+ 1
p+

k

− i
4π (p+

j − p+
k )

+ (A.18)

+ 2π
[ 1

p+2
k

− 1

p+2
j

− 1

16π2
(p+2

k − p+2
j )

]

log

(

1
p+

j

+ 1
p+

k

)2
+ 1

16π2 (p+
j − p+

k )2

(

1
p+

j

+ 1
p+

k

)2
+ 1

16π2 (p+
j + p+

k )2
.

Fortunately, the only property of χ
(i)
kj we need, is that they are antisymmetric w.r.t. the

change i ↔ j: χ
(i)
kj = −χ

(i)
jk .

Summing up the Bethe equations (A.15) over k and using the antisymmetry property

of χ
(1)
kj we first find

m
∑

k=1

p+
k = −

M
∑

k=m+1

p−k = 2π
√

n , n ≡
m

∑

k=1

nk . (A.19)

Second, summing up eqs.(A.16) and using the momentum conservation we obtain

L − M

2
= − 1

2π





m
∑

k=1

p
(2)
k −

M
∑

j=m+1

p
(2)
j



 . (A.20)

Third, summing up eqs.(A.17) and using eqs.(A.19),(A.20) we get the relation

(

L − M
2

)2

4
√

n
=

m
∑

k=1

24π2 − p+4
k + 24p+

k p
(3)
k

48πp+
k

−
M
∑

j=m+1

24π2 − p−4
j + 24p−j p

(3)
j

48πp−j
.

Expanding the energy in the large λ limit we get

EBA = −M +
4
√

λ

2π

(

m
∑

k=1

p+
k −

M
∑

k=m+1

p−k

)

+
1

2π





m
∑

k=1

p
(2)
k −

M
∑

j=m+1

p
(2)
j



 +

+
1
4
√

λ





m
∑

k=1

48π2 − p+4
k + 24p+

k p
(3)
k

48πp+
k

−
M
∑

j=m+1

48π2 − p−4
j + 24p−j p

(3)
j

48πp−j



 + . . .

Substituting here our findings we obtain

EBA = 2
(

n2λ
)

1

4 −
(

L +
1

2
M

)

+
1
4
√

λ







(

L − M
2

)2

4
√

n
+

π

2

(

m
∑

k=1

1

p+
k

−
M
∑

j=m+1

1

p−j

)






+ . . .

It is rather remarkable that the subleading term in the strong coupling expansion of the

Bethe ansatz energy appears to coincide with the canonical dimension of the gauge the-

ory operator taken with the negative sign. Thus, at strong coupling the total conformal
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dimension, ∆ = J + M + EBA, of the dual gauge theory operator has an expansion

∆ = 2
(

n2λ
)

1

4 +
1
4
√

λ





J2

4
√

n
+

π

2

(

m
∑

k=1

1

p+
k

−
M
∑

j=m+1

1

p−j

)



 + . . . . (A.21)

Thus, as in [18], we found that the gauge theory operators are dual to string modes with

masses m2 = 4n
√

λ, where the level n is determined by the mode numbers of the roots

with a positive real part n =
∑m

k=1 nk. We also see that the constant term in the large λ

expansion cancels out. We were not able to write this formula for general M in terms of

the excitation numbers nk because the individual momenta pk, which are solutions of the

complicated equation (A.15), are not explicitly known.

The formula (A.21) can be confronted with eq. (4.10) describing the strong coupling

asymptotics of our reduced model. For the reader convenience we repeat this equation here

E = 2
(

n2λ
)

1

4 +
1
4
√

λ

[

J2

4
√

n
+

√
n

4

∑

i

1

|ni|

]

+ . . . . (A.22)

The leading terms in eqs.(A.21) and (A.22) coincide. In both equations the constant

(subleading) piece is absent. However, the terms of order 1/ 4
√

λ are different. They coincide

only for the special case of two impurities, M = 2.

The results about the subleading behavior of conformal dimensions should be taken

with caution. Indeed, in general the quantum string Bethe ansatz [18] involves an infinite

number interpolating functions cr(λ) with the property cr(λ) → 1 as λ → ∞. The results

by [22] suggest that beyond the semiclassical limit these functions become non-trivial.

In our computation above we assumed that all cr = 1. Taking into account the actual

functions cr (yet to be determined) might change the conclusion about the strong coupling

expansion beyond the leading order.

B. Lax representation

Integrability of the classical superstring theory on AdS5 × S5 was demonstrated in [6] by

means of constructing the Lax (zero-curvature) representation for the superstring equations

of motion. In [28] we have shown that this connection admits a consistent reduction to the

fields describing excitations from the su(1|1) sector. Thus, the non-trivial interacting Dirac

Hamiltonian [28] which governs the dynamics in this sector is integrable, but its integrable

properties are not transparent rather they are hidden in the highly non-trivial Lax pair.

This pair can be formulated in terms of two 4 × 4 matrices, Lσ and Lτ , depending on a

spectral parameter z and satisfying the condition of zero curvature

∂σLτ − ∂τLσ − [Lσ,Lτ ] = 0 (B.1)

as a consequence of the dynamical equations.
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In opposite, in our present approach based on the uniform light-cone gauge integrability

of the reduced model is manifest as it is the theory of a free 2-dim massive Dirac fermion.

In fact the proper choice of the gauge resulted into linearization of the dynamical equations!

Non-triviality of the original theory is now hidden in the new dispersion formula relating

the energy E to the charges M and J .

In spite of the manifest integrability of the model it is still interesting to know what is

the reduction of the general Lax connection to the su(1|1) sector in the uniform light-cone

gauge. For the sake of clarity we restrict our further discussion to the case of zero winding

number,6 m = 0, and fix κ =
√

λ
2 . We also introduce the concise notation for the original

fermionic variables ϑ of [28]

ψ1 = ϑ3 , ψ2 = ϑ8 ,
∗

ψ1= ϑ3 ,
∗

ψ2= ϑ8 (B.2)

as well as two even quantities

ς = ψ1

∗
ψ′

1 +
∗

ψ1 ψ′
1−

∗
ψ2 ψ′

2 − ψ2

∗
ψ′

2 , (B.3)

% = (ψ1

∗
ψ2 −

∗
ψ1 ψ2)

′ . (B.4)

One can further show that the minimal Lax connection for the su(1|1) sector in the

uniform light-cone gauge is given in terms of 2 × 2 matrices of the form

Lσ =











− i√
λ̃

z
1−z2 + 1

4ς
−

∗

ψ′
1
−iz

∗

ψ′
2√

1−z2

−ψ′
1+izψ′

2√
1−z2

i√
λ̃

z
1−z2 + 1

4 ς











, (B.5)

Lτ =











− i
2

1+z2

1−z2 + i
√

λ̃
4 % −

√

λ̃
z

∗

ψ′
1
+i

∗

ψ′
2√

1−z2

−
√

λ̃ zψ′
1
−iψ′

2√
1−z2

i
2

1+z2

1−z2 + i
√

λ̃
4 %











. (B.6)

Here z is the spectral parameter and we recall the definition λ̃ = 4λ
P 2

+

. One can easily check

that the Lax connection above has zero curvature (B.1) by virtue of the fermionic equations

of motion followed from eq. (3.11)

ψ̇1 = iψ1 − i
√

λ̃ ψ′
2 , ψ̇2 = −iψ2 + i

√

λ̃ ψ′
1 . (B.7)

Thus, the Lax connection for the whole superstring sigma-model [6] boils down under the

reduction to the su(1|1) sector in the uniform light-cone gauge to that of the free massive

Dirac fermion. In writing component Lτ we also used the evolution equations (B.7) to

trade the τ -derivatives of fermions for their σ-derivatives.

6Of course, for m 6= 0 the reduced Lax connection also exists.
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Some comments are in order. Upon choosing the minimal reduction to 2 × 2 matrices

the corresponding Lax connection has the non-vanishing supertrace (its usual trace is also

non-zero). This is not problematic since the only requirement that matters is the fulfillment

of the equations of motion which is indeed the case. One can also see that the off-diagonal

part of Lσ contains the σ-derivatives of the fermions rather than the fermions themselves.

This problem can be cured by means of a certain gauge transformation which removes in Lσ

the off-diagonal derivatives in favor of the fields. Then the off-diagonal elements of eq. (B.1)

will directly generate the fermionic equations (B.7) rather than their σ-derivatives. This

gauge transformation leads however to a slightly more complicated form of the diagonal

matrix elements in Lσ and Lτ and, therefore, we have not attempted to discuss it here.
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